Imaging acute thermal burns by photoacoustic microscopy
نویسندگان
چکیده
منابع مشابه
Imaging acute thermal burns by photoacoustic microscopy.
The clinical significance of a burn depends on the percentage of total body involved and the depth of the burn. Hence a noninvasive method that is able to evaluate burn depth would be of great help in clinical evaluation. To this end, photoacoustic microscopy is used to determine the depth of acute thermal burns by imaging the total hemoglobin concentration in the blood that accumulates along t...
متن کاملThermal intravascular photoacoustic imaging
Intravascular photoacoustics (IVPA)-a minimally invasive imaging technique with contrast related to optical absorption properties of tissue, can be used to visualize atherosclerotic plaques. However, the amplitude of photoacoustic signals is also related to a temperature dependent, tissue specific parameter-the Grüneisen parameter. Therefore, photoacoustic signals measured at different temperat...
متن کاملIn vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy
Corneal neovascularization leads to blurred vision, thus in vivo visualization is essential for pathological studies in animal models. Photoacoustic (PA) imaging can delineate microvasculature and hemodynamics noninvasively, which is suitable for investigating corneal neovascularization. In this study, we demonstrate in vivo imaging of corneal neovascularization in the mouse eye by optical-reso...
متن کاملFunctional transcranial brain imaging by optical-resolution photoacoustic microscopy.
Optical-resolution photoacoustic microscopy (OR-PAM) is applied to functional brain imaging in living mice. A near-diffraction-limited bright-field optical illumination is employed to achieve micrometer lateral resolution, and a dual-wavelength measurement is utilized to extract the blood oxygenation information. The variation in hemoglobin oxygen saturation (sO(2)) along vascular branching has...
متن کاملIn vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy.
Photoacoustic microscopy was developed to achieve volumetric imaging of the anatomy and functions of the subcutaneous microvasculature in both small animals and humans in vivo with high spatial resolution and high signal-to-background ratio. By following the skin contour in raster scanning, the ultrasonic transducer maintains focusing in the region of interest. Furthermore, off-focus lateral re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Optics
سال: 2006
ISSN: 1083-3668
DOI: 10.1117/1.2355667